A (A 40 v4 D

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shu-Ping Zhang,^a Hui-Jun Liu,^b Si-Chang Shao,^a* Ying Zhang,^a De-Guang Shun,^a Song Yang^a and Hai-Liang Zhu^a

^aDepartment of Chemistry, Fuyang Normal College, Fuyang, Anhui 236032, People's Republic of China, and ^bDepartment of Chemistry, Anhui University, Hefei, Anhui 230039, People's Republic of China

Correspondence e-mail: shaosic@fync.edu.cn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.004 Å R factor = 0.051 wR factor = 0.147 Data-to-parameter ratio = 13.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-(4-*tert*-Butylphenyl)-3,5-di-2-pyridyl-4*H*-1,2,4-triazole

The title compound, $C_{22}H_{21}N_5$, has been synthesized and characterized by single-crystal X-ray diffraction. The dihedral angle between the benzene and triazole rings of the title compound is 117.6 (5)°. The triazole ring forms dihedral angles of 25.2 (5) and 136.7 (5)° with the two pyridyl rings.

Received 29 March 2004 Accepted 13 April 2004 Online 29 May 2004

organic papers

Comment

Extensive studies have been carried out on substituted 1,2,4triazole ligands (Cornelissen *et al.*, 1992; Gupta & Bhargava, 1978; Kunkeler *et al.*, 1996). It is of interest that some iron(II) complexes containing substituted 1,2,4-triazole ligands are spin-crossover materials, which could be used as molecularbased memory devices, displays and optical switches (Garcia *et al.*, 1997; Kahn & Martinez, 1998). We have recently synthesized the title molecule, (I), which can act as a potentially dinucleating ligand. The present X-ray structure determination was carried out in order to elucidate the molecular conformation.

Bond lengths and angles in the structure are comparable with those reported for related structures (Wang *et al.*, 1998; Chen *et al.*, 1998; Fun *et al.*, 1999). The pyridyl groups and the

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Figure 1

The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

organic papers

benzene ring lie in a propeller arrangement around the central 1,2,4-triazole ring, thereby minimizing the steric effects among these rings. The dihedral angle between the planes of the benzene and triazole rings is $117.6 (5)^\circ$. The two pyridyl rings form dihedral angles of 25.2 (5) and 136.7 (5) $^{\circ}$ with the triazole ring.

Experimental

The title compound was synthesized by the reaction of equivalent amounts of 4,4'-p-(tert-butyl)phenylphosphazoanilide and N,N'dipyridoylhydrazine in N,N-dimethylaniline for 3 h at 483-493 K. Single crystals suitable for X-ray diffraction analysis were obtained by evaporation of an acetone solution.

Mo $K\alpha$ radiation

reflections

T = 298 (2) K

Crystal data

 $D_x = 1.260 \text{ Mg m}^{-3}$ C22H21N5 $M_r = 355.44$ Monoclinic, $P2_1/n$ Cell parameters from 1760 a = 15.348 (9) Åb = 5.980(3) Å $\theta = 3.0-20.9^{\circ}$ $\mu = 0.08~\mathrm{mm}^{-1}$ $c = 20.909 (12) \text{ \AA}$ $\beta = 102.488 \ (9)^{\circ}$ $V = 1873.7 (18) \text{ Å}^3$ Prism, colorless $0.45 \times 0.33 \times 0.29 \mbox{ mm}$ Z = 4

Data collection

Bruker SMART CCD area-detector	3291 independent reflections
diffractometer	1729 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.042$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -18 \rightarrow 18$
$T_{\min} = 0.966, T_{\max} = 0.978$	$k = -7 \rightarrow 6$
9340 measured reflections	$l = -21 \rightarrow 24$

Refinement

Refinement on F^2 H-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.051$ $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0721P)^{2}]$ $wR(F^2) = 0.147$ where $P = (F_o^2 + 2F_c^2)/3$ S = 0.96 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$ 3291 reflections $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$ 244 parameters

Table 1

Selected geometric parameters (Å, °).

N1-C1	1.372 (3)	N4-C7	1.337 (3)
N1-C2	1.373 (3)	N4-C3	1.339 (3)
N1-C13	1.437 (3)	N5-C8	1.335 (3)
N2-C1	1.304 (3)	N5-C12	1.335 (4)
N2-N3	1.386 (3)	C16-C19	1.517 (4)
N3-C2	1.304 (3)		
N2-C1-C3-N4	155.9 (3)	C1-N1-C13-C18	-68.8 (3)
N3-C2-C8-C9	-44.0 (4)		

All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C-H distances of 0.96 Å and with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C}).$

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998) and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick,

Figure 2 The molecular packing of (I), viewed along the b axis.

1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Education Office of Anhui Province, China, for research grant No. 2003 kJ681.

References

- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, W., Wang, Z. X., Jian, F. F., Bai, Z. P. & You, X. Z. (1998). Acta Cryst. C54. 851-852
- Cornelissen, J. P., van Diemen, J. H., Groeneveld, L. R., Haasnoot, J. G., Spek, A. L. & Reedijk, J. (1992). Inorg. Chem. 31, 198-202.
- Fun, H. K., Chinnakali, K., Shao, S. C., Zhu, D. R. & You, X. Z. (1999). Acta Crvst. C55, 770-772.
- Garcia, Y., Koningsbruggen, P. J., Codjovi, E., Lapouyade, R., Kahn, O. & Rabardel, L. (1997). J. Mater. Chem. 7, 857-858.
- Gupta, A. K. & Bhargava, K. P. (1978). Pharmazie, 33, 430-431.
- Kahn, O. & Martinez, C. J. (1998). Science, 279, 44-48.
- Kunkeler, P. J., van Koningsbruggen, P. J., Cornelissen, J. P., vander Horst, A. N., vander Kraan, A. M., Spek, A. L., Haasnoot, J. G. & Reedijk, J. (1996). J. Am. Chem. Soc. 118, 2190-2197.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wang, Z. X., Bai, Z. P., Yang, J. X., Okamoto, K. I. & You, X. Z. (1998). Acta Cryst. C54, 438-439.